Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin.

نویسنده

  • M Veit
چکیده

The neuronal N-ethylmaleimide-sensitive-factor-attachment-protein receptor (SNARE) proteins 25-kDa synaptosomal protein (SNAP-25), syntaxin 1 and synaptobrevin 2 interact to form the intermembrane SNARE complex, which mediates docking and fusion of synaptic vesicles with the plasma membrane. Assembly of the SNARE complex is accompanied by conformational changes, especially in SNAP-25. SNAP-25 is palmitoylated in vivo at cysteine residues located in the middle of the molecule. Acylation is required for membrane binding or membrane targeting of this intrinsically hydrophilic protein. Palmitoylation of recombinant SNAP-25 was studied in vitro in the absence of an enzyme source with [(3)H]palmitoyl-CoA as the lipid donor. [(3)H]Palmitate incorporation into unbound SNAP-25 was negligible, but was stimulated 100-fold when SNAP-25 was present in the SNARE complex. SNAP-25 in a binary complex with syntaxin 1 was palmitoylated with almost the same efficiency. A mutant of SNAP-25, which was not acylated in vivo, did not incorporate [(3)H]palmitate in this assay. [(3)H]Palmitate incorporation into wild-type SNAP-25 was blocked by chemical blocking of free SH groups, but slightly stimulated by reduction of disulfide-bonds. This shows that palmitoylation of SNAP-25 in vitro occurs at the same cysteine residues that are palmitoylated in vivo. This demonstrates that efficient palmitoylation of SNAP-25 depends on an interaction with a physiological binding partner. It suggests further that palmitoylation of SNAP-25 requires the alpha-helical conformation of the protein, which is induced by binding to syntaxin 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway.

Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated membrane protein essential for neurotransmitter release from synaptic terminals. We used neuronal cell lines to study the biosynthesis and posttranslational processing of SNAP-25 to investigate how palmitoylation contributes to the subcellular localization of the protein. SNAP-25 was synthesized as a soluble protein that und...

متن کامل

کلونینگ، بیان و تخلیص پروتئین SNAP-25

Background & Objectives:Clostridial neurotoxin inhibits neurotransmitter release by selective and specific intracellular proteolysis of synaptosomal associated protein of 25KDa (SNAP-25), synaptobrevin/VAMP-2 and syntaxin. SNAP-25 is one of the components that forms docking complex in synaptic ends. This protein is subtrate for botulinum neurotoxins types A,C, and E. Each of these toxin serotyp...

متن کامل

Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa.

Clostridial neurotoxins are zinc endopeptidases that block neurotransmission and have been shown to cleave, in vitro, specific proteins involved in synaptic vesicle docking and/or fusion. We have used immunohistochemistry and immunoblotting to demonstrate alterations in toxin substrates in intact neurons under conditions of toxin-induced blockade of neurotransmitter release. Vesicle-associated ...

متن کامل

Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting.

The release of neurotransmitter at a synapse occurs via the regulated fusion of synaptic vesicles with the plasma membrane. The fusion of the two lipid bilayers is mediated by a protein complex that includes the plasma membrane target soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (t-SNAREs), syntaxin 1A and synaptosome-associated protein of 25 kDa (...

متن کامل

Myosin phosphatase and RhoA-activated kinase modulate neurotransmitter release by regulating SNAP-25 of SNARE complex

Reversible phosphorylation of neuronal proteins plays an important role in the regulation of neurotransmitter release. Myosin phosphatase holoenzyme (MP) consists of a protein phosphatase-1 (PP1) catalytic subunit (PP1c) and a regulatory subunit, termed myosin phosphatase targeting subunit (MYPT1). The primary function of MP is to regulate the phosphorylation level of contractile proteins; howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 345 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2000